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TRANSPORMATIONS OF SYSTEMS OF RELATIVISTIC
PARTICLE MEGHANIOS S/

by
Herman Rubin and Patrick Suppes

1 Introduction.

In McKinsey, Sugar, and Suppes [7] the axiomatic foundations of classical
particle mechanics were investigated; and in McKinsey and Suppes [87 the trans-
formations which carry systems of classical particle mechanics into systems of
¢lussical particle mechanics were determined. The purpose of the present papser
is a similar investigation of relativistic particle mechanics (in the sense
of the special theory of relativity)y Some remarks on the general orientation
of these studies are to be found in Section 1 of McKinsey, Sugar, and Suppes [71,
and in McKinsey and Suppes [9].

In regard to our axiomatization of relativisitic particle mechanics, wy
want to emphasize that we have in no sense attempted to use primitive nctionus
which are logically or epistemologically simple. Investirations with these
latter aims are to be found in Reichenbach [117, Robb [121, Schnell [121, snd
Waiker [14); but these studies are incomplete in the sense that they do not
give axioms adequate for relativisitic particle mechanics as it is ordinarily
conceived by physicists. We have attempted to present uch a complete set of
axioms in a mathematically clear way.

The main result of the present paper is the determination under a certain
weak hypothesis of the set of transformations which always carry system= of
relativistic particle mechanics into systems of relativistic particle mechanics.

Although this set of transformations is not a group (under the usual operatior)
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we are able to show that it is essentially a Brandt groupoid. It is difficult
precisely to compare our results with those of MacColl [6], but our results
seem to represent an improvement in three respects: (i) we work within an
explicit axiomatic framework; (ii) we consider transformations of the units
of mass and force as well as position and time; (i1ii) we consider transfor-
mations from one value for the velocity of light to another.

We briefly summarize the mathematical notations we use, most of which
are standard. We denote the ordered n-tuple whose first member is 8y, whose
second member is a5, and so on, by

<hl’"'°’an>
By an n-dimensional vector we mean an ordered n-tuple of real numbers.
Operations on vectors are defined in the usual way. We use the symbol "C" to
denote the real number zero, the n-dimensional vector all of whose components
are zero, and the matrix all of whose elements are zero. If A= <:él, .u(an:>

1s any vector, the length |A| of A is defined by

{4} = “’ai* ...4'ai )

i 4 » We mean the r-dimensional vector <§i ,ai yevr8y ;7.
1’72 " 7r 1 2 r

Thus if A= <%47,5>, then [A]2 3" <:7.2>. If A is a vector, we sometimes
y

and by [A]i

write na?n for "lAlZ". If ( is a matrix, we dencte the transpose of (1 by
»

" O.n, and the determinant of a by "I|Q|". We denote the identity matrix

by‘\Q"a Although we treat vectors as one-rowed matrices, if A is a vector

we always mean by |Al, the length of & and not the determinant of A: the

meaning should be clear from the context. We use both matrix notation and

usual vector notation for the inner product of two vectors A and B. Thus,

* o
we sometimes write: AB , and sometimes: A-°B, whichever is more convenient,




We use Menger's notation for derivatives (see Menger [1C)). If f i a
function, then D(f) is the derivative of f. Thus, for example, D(sin)= cos,

[D(sin)¥(x) = cos x, and [D2(sin)](x)--sin x. In this connection, we use the

standard notation for sums, products, quotients, square roots, etc., of functions.

Thus, for example, if f and g are functions of a real variable, by f+g we mean
the function h such that for every real number x

hix) = £(x)+ g(x)
If £ is a 1-1 function, f"'l is the inverse function of f. 1t is also conwenient
to introduce a special symbol for the gompositjion of two functions: if £ and g
are functions of a real variable, by gof we mean the function h such tnat for
every real number x

h(x) = g(f(x))
To make some of our equations involving derivatives more perspicuous 1in reilaticn
to the notation ordinarily used in physics, we introduce formally the foliow:nag
two symbols: if f and g are functions of a real variable, then the function

gg is defined by the following equation (for all real numbers x)

Df
CIENCICII

2
and the function Q_§ by the equation
dg
Df
2 D[5.]
dLiy) - [ =2 | ()
ng Dg

Finally, we also use the following notation: I is the set of all positive
integers, R is the set of all real numbers, R+ is the set of all positive real
numbers; and En is the set of all n-dimensional vectors. We sometimes use
geometrical language, referring to vectors in En as points in n-dimensional

Euclidean space, etc.
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2. Primitive potions.

Our axioms for relativistic particle mechanics are based on six primitive
notions: P, 5(, m, s, £, and ¢c. P is a set, €T and m are unary functions, s is
a binary function, f is a ternary function, and ¢ is a constant.

The intended physical interpretation of P is as the set of particles.

For every p in P, kap) is to be interpreted physically as a set of real
numbers measuring elapsed times (in terms of some unit of time and measured
from some origin of time). There is a good physical reason for assigning
(possibly) different sets of real numbers to different particles, instead of
having one set of elapsed times for the whole system, as in McKinsey, Sugar,
and Suppes (712 two particles which have a simultaneous "life-span" with
respect to one inertial frame of reference may have life-spans which do not
even overlap with respect to another inertial frame.

For every p in P, m(p) is to be interpreted physically as the numerical
value of the rest mass of p. For every p in P and t in Jr(p), s(p,t) is a
vector, to be thought of physically as giving the position of p at time %.

Thus the primitive s fixes the choice of a coordinate system. It is also

possible to take as a primitive the set of all admissible (i.e., inertial)
coordinate systems; this procedure is followed in Hermes [31. We remark that

for a fixed p in P, it is usually convenient to use in place of s the function sp,
which is defined on {(p) and is such that for every t in Aip), sp(t)='s(p,t),

For every p in P and t in f(p), and for i any positive integer, f£(p,t,i)
is a vector giving the components (parallel to the axes of the coordinate
system) of the ith force acting on p at time t. For further discussion of
this primitive, applicable to relativistic as well as classical particle
mechanics, see McKinsey, Sugar, and Suppes [7].

Our primitive constant ¢ is to be interpreted as the numericel value of

the velocity of light.



T

3. Axioms.

Using the six primitive notions just described, we now give our axio

for relativistic particle mechanics.

An ordered sextuple I = <P, Qym,s,f,c) which satisfies Axions AL-A7
called an n-DIMENSIONAL SYSTEM OF RELATIVISTIC PARTICLE MECHANICS (or som

simply g SYSTEM OF RELATIVISTIC PARTICLE MECHANICS, for abbreviation, S.R

Al.
A2.

A3,

A5.

Ab.

A7.

Kinematical axioms
P is a pon-empty, finite get.
If peP, then YA(p) is an interval of real numbers.
If peP and teq(p), then Sp(t) is an n-dimensional vector; an

moreover, the gecond derjvative of s p exists throughout the
interval Y(p).
The constant ¢ is a positive real number such that for every p :
and t in L(p),

[(Dsp)(t)\< e

Dynamical axioms

1f peP, then m(p) is a positive real number.
If peP and t€ L(p), then £(p,t,1), £(p,t,2),... are n-dimensic

vectors such that the series
[0 0]

Z £(p,t,1)

i=1
is absolutely convergent.
If peP and te q(p), then

=
D R e
m(P)[D ﬁ% 1(t) = 1-1__8;9_2...!._. E £(
\Ds ‘ c i=1
- ——h
02




Since this set of axioms is similar in many ways %o that given for classical
mechanics in McKinsey, Sugar, and Suppes [7], a large number or remarks to be
foudn in Section 3 of that paper are also applicable here and will nct be
repeated. From Axiom 47 it is clear that the force concept we are using is
that of Minkowski. In the solution of special problems this concept is not
always the most useful one, but the relative simplicity of its transformation
properties more than justifies its use here. Some readers may feel that thers
are good physical grounds for taking the notion of relativistic mass as primitive
instead of that of rest mass; however, it is easy to define the notion of
relativistic mass in terms of the notion of rest mass and our other primitives,
and the use of the notion of rest mass as a primitive emphasizes the considerakbl=:
formal similarity between our axioms for relativistic mechanies and the axioms
for classical mechanics of McKinsey, Sugar, and Suppes.

For p in P, !IZp) is a time interval for the particle p (with respect to
the frame of reference fixed by our choice of primitives). It may seem that it
would have been simpler to take ﬂ‘(p) as the interval of proper time of the
particle p. However, this approach would complicate the treatment of systems
cf particles. In the main, the notion of proper time is most convenient in
discussions restricted to the consideration of a single particle. From the
remark in the previous section it is clear that it is not reasonable to require
that the intervals ﬁizp) be overlapping. A second argument against such an
assumption is the prominence in modern physics of elementary particles with
very short life-spena.Z/ We note, however, that in studying certain special
problems, such as that of defining a reasonable notion of center of mass of a
S.R.P.M,, it is desirable to restrict the discussion toc systems in which

/‘T(p)- (- ©,*®) for every p in P.

A

R




If 1) M"c" is replaced by "1/k" in the inequality of Axion A4 and the
equation of Axiom A7, ii) k is treated as a primitive replacing ¢, and
1ii) Axiom A4 is modified to reads "The constant k is a non-negative real
number such that...", then, by adding appropriate further axioms, we can get
either classical or relativistic particle meechanics. Thus an additional axiom
asserting that k= 0 gives us classical mechanics; and the assertion that k =0

gives us relativistic mechanies.

We close this section with a number of definitions which will be useful
later.
For p in P and t in (p), we set
v (t) = (Ds_)(t) ;
o ( p( ;
vp(t) is, of course, the velocity of p at time t. With respect to a fixed

element t in ﬁ(kp), we define the function 'Ct (for p in P and t in JZ}p))

o)
as follows:

QZtO(p,t) is the proper time of p. Since we are only interested in the
derivative of this function with respect to t, and since the derivative is
independent of to, we shall usually drop the subscript.
For p in P and ¢ in q(p), we define the function q as follows:
a(p,t) = (fé(pst),t:>
It is natural to call q the gpace-time function.
For pin P, ¢ in q-(p) and i any positive integer, we define what we

call the relativistic force function frel as follows:

r(p,t,1) v (%)
L p, 1, 1) = (Elpt, 1), kbl >
C

e ——— e eep——_ % ¥ e~
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Although it is not usual to adopt a special name for this function, the function
itself is used frequently in textbook treatments of relativity.

By a c-particle path (for any positive number c¢) we mean a set J of
points (i.e., vectors) in E ,, for which there exists a S.R.P.M. <{1} ,Z.,m,syf,c>

such that for every point X of E X is in J if and only if there exists a

n+l’
t in ,‘Rl) such that X= <s(l,t),t> 3'/ It is obvious that if g is any twice-
differentiable function defined on an interval T of real numbers and taking
vectors in En as values, then the set of vectors <g(t),t> for t in T is a
c-particle path, provided that |(Dg)(t)| < ¢ for all t in T.

By the glope of a 1line X in E ,,, whose projection on the (n+1)% % axis

is a non-degenerate segment, we mean the n-dimensional vector W such that for

any two distinct points <Zl,x]> and <22,x2> of X

Z]~Z;

- - w *
n-%

By the gpeed of (X we mean the non-negative number \l\ . By a c-inertial
path we mean a line in En'fl whose speed is less than ¢. We note that every
segment of a c-inertisl path is a c-particle path, but is not necessarily a
c-inertial path (since a c-inertial path must be a whole line). By a
c-lipe we mean a line in En+1 whose speed is equal to c¢c. The notion of a
c~line corresponds to the intuitive notion of a light line.

If we want to refer to a S.R.P.M. ' with numerical constant c, we

shall write: S.R.P.M. FL.




T

4. Transformation Theorenms.

We begin by defining the notion of a generalized Lorentz matrix. An
intuitive discussion of such matrices follows Theorem 1.

Definition 1. Let ¢, ¢ and A be positive real numbers. Then a matrix Q
of order n+l is said to be a GENERALIZED L.ORENTZ MATRIX WITH RWSPECT TO
e,e?, A if and only if there exist nutbers § and B, an n-dimensional
vector U and an orthogonal matrix & of order n such that

§° =1

2
2 U i
ﬁ (1- ’2) = 1 ’ H
c .

and *

+ =1 . -1

(1) Q= A 3 i_ & 0)\[(9 -%2 vy f.?-
0 0 § - U 8

The following two lemmas simplify the statement and proof of Theorem 1.

Lemmg 1. Let <{1} ,‘I,m,s,f,c)p_g a S.R.P.M., let ¢/ and A be positive
zeal nunbers, and let (L be a generalized Lorentz matrix with respect to
{e,e/, N> . Let the function h be defined by the equation (for every t

in (1))
B(t) = [<s; (8,8 D007 4

Then the function Dh exists; its values axe either always positive or alway
negative; and the functiop h is 1-1.

Proof. From Definition 1 and the hypothesis of the lemma we see that

10]

there are numbers & and (3, an n-dimensional vector U and an orthogonal

matrix & such that

5% =1
2, 1P
g (1-;5) -1
and Mge B=LECY) | ABET
a. U c’
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s o >e: ()€
£)EU e
h(t) = _Lsz_&ﬁ_t m—ﬁ- tn——s-l-——-—)
Hence ¢

¥*
o/ (DR) (4) _ . VJ(t)S Zu . IVJ(t)fl | ul
SA Bc cc’ ~ ce’

Using Axiom A4 and the fact that 8 is orthogonal, we have

S >

Since ‘U\ < ¢/, the function Dh is bounded away from zero, and it thus follows
from Rolle's theorem that h is 1-1.

The following lemma is a theorem of matrix theory.

Lemna 2. Let ¢, ¢’ and A be positive real numbers. Then a matrix A
of order n*l is a generalized Lorentz matrix with respect to <&,c”,A) if and

only if

o0l e i)

Proof. The proof of necessity is obtained by direct application of
Definition 1.
For the proof of sufficiency, ief
0. .- ("N K*)
L m
where ?J is a matrix of order n, K and L are n-dimensional vectors and m is a

real number. From (i) we obtain at once:

(1) NN - 2K K = A

(2) WL - ¢*?nk” = 0

(3) 1" - or%m = - A2c?
From (3) it follows that

(4) m#go
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We define:
'
(5 g~ sl
(6) S - -I
| m|
(7) Us-z
2 *
(8) «d e Lol K Ty

Since the right member of equation (i) of Definition 1 can be written

M5+“h%§i% LAgEY
_DebgU Ae 38

c c

in order to complete the proof it suffices to show that
*
(1) A&+ .(.p.:ll.é&ll) Y
U
¥*
. ¥*
(I1) -A-(i52l = K

4

¢
(111) - -Aic@ = L
(1) hedf .,

(v) §% =1

(V1) p2(1— 6%2-5) -1
(VII) 4 PN

Equation (III) follows immediately frem (5), (6), and (7), equation (IV) from

(5) and (6), equation (V) from (6), and equation (VI) from (3), (5), and (7).

From (2) and (7) we get
(9) WU = e’

and then from (8) and (9) we have
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2. % 2. #
. ) ga* - ] . - K U. *+ - i K)
(10 \2 (N .(.é_l.lg__._© 7 (W ” 3

LP—M—[@(c KK+ BE (-erK)
+(@-1)c'KK]
* - 14 * .
=J)-\5[’)W +1231U§°—Kx(-2(3+§-1)1
2,,. /l" ¥*
"2 AL ‘-@——1—62012" K K

From (VI), (1) and (10) we conclude that
»*
¢ =4 ,

which establishes equation (VII), Multiplying both sides of (8) on the right
¥*

by - JA*%%‘, and using (9), we get equation (II). Equation (I) follows from
c

)\2

(8) and (II), which completes the proof of the lemma.

The following theorem is a generalization of the well-known result that

the relativistic equation of motion is covariant under a Lorentz transformation.

Theoren 1. Let <P, f,m,s,£,0) be an n-dimensional S.R.P.M. Let o,
and A be positive real numbers, iet B be ap n*l-dimensional vector and let (L
be a generalized Lorents matrix with respect to <¢,c”,A ). For each p in P
let the function h  be defined as follows (for all ¢ in T(p)):
ho(8) = (s (t) e p0sB]
(ayLsmlmmgmtmtmnh ! exists.) Let the function % be defined
ollows: for p in P, (7zp) is the range of the function h ; and let the

> AAN-4 _—se

[+

functions m’, s/ gnd f/ be defined by the following equations (fg; p in P,
/ iy L7p) and 1 in I)s
m/(p) = ¥m(p) ,

8/(p,7) = [ s (p, b (6), 10 (8 QL+ B)

l,...,n ’
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-1 -1
;::’2 B £(p,h_“(t7),1)v_(h “(¢t")
fl(p?t’)i) = )\2".2 [<f(p9hp1(t,))i)9 s c2 2P > ]1’ ,n .

Then (M= <P, A’,m%,57,£%,6") is an n-dimensional S.R.P.M.
Proof. It will suffice to show that [’ satisfies Axioms A4 and A7,

since the proof for the other axioms iz trivial. Let

@ ]
F g
It is easy to show that for f in P and t“ in 127(p)
o0, (5)
¥
o Y E
vp(hp (t ),1>(g>

with the denominator of the right member of (1) always unequal to zero.

(1) v;(t’) =

(ﬁince in this proof we always consider a fixed particle p, we drop the subscript
"p" from this point on.)

We have from Axiom A4

(2) M( vt enl*-PA <o,

0 *
N(lvie2- 6?) « NG, <"° 2>Q<h"1(t/)>91> .
0 -¢

Then by Lemma 2 we have

0 » _ »
3 N N2 @) = GO, aC: ; R TIEYIE
-c

The right member of (3) is equal to

(4) <v(h'”1(t')),1> (‘5) (\y‘.9*p*)<v(h°!(t’ )),1>*

¥* *
- or v(h'lu')),l)(’ﬂg)<Eg><v(h'1(t'>>,1> ,

and using (1) we see that (4) is equal to

»* »* 3
(5) (<rHeM),1) (Es ) v(eN?- o A((rin ), 1) <F; > )

but
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From (2), (3), (4), and (5) we conclude that

lv’ (%= e2 <0,
I'd
which verifies Axiom A4 for N .
It is not difficult to show that from Axiom A7 we have

o]

(6) —ale) o Be g4y .Y el gy
1-J—m-l—" 2 /\,1-13]—2? =t

2 2
c ¢

Setting q’(t’) = <s’(t’),t’> for all t7 in j’(p), we conclude from the
hypothesis of our theorem that
a’(h(t)) = q(t)A+B ,

and thus
(7) ((Da’)oh) (£)(Dh)(t) = (Dq)(t) Ol
Directly from the definition of q and g/ we obtain
3 o * 5 2
(8) (Da) (¢) o ) ()" = (w22,
0 -
and °

3 "
(9 ((g)o h)(t)( °,2> (((0g")o ) (£)* = |(v7o n)(1)|2- ¢r?
0 -¢

Using Lemma 1, Lemma 2, and (7) we obtain from (8) and (9)

2
|(v/ o) (8)]2- ¢/% = —2 . (1(8)12- o2)

i ((Dh)(t))2 ;
an us
2 22 2
(10) 1--'-(11"-*1}:2&”—-- 12>‘° 5 (1-Lﬂ§)~L)
c ¢’“((Dh)(t)) c

By Lemma 1, (Dh){t) is either always positive or always negative; the remaindsr
of our proof is analogous in the two cases, so that we shall only consider the

case where it is mlways positive. We then have from (7) and (10)

LDeonl(t) . ¢ (d)(x) &

2! 2 ’
,\(lm_mém_ ,\cqfl-lﬂ%i-
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and hence /
/ 4
(11) —2 __|lan (t) = —e'OIWA
. Ao f1- Lualt?
T2 ¢ 2
c ¢

Differentiating both sides of (11), and using (6), we obtain

(12) on)(t) [ |p [—L— | on)®)

c,2

/

"'f\';D —Dg (£) 00

2 ,
- (4/1-—\!?)-‘— )(-X-cfﬁ(—gg)(i}:; o1 (p,4,1) QV

From (10), (12), and the hypothesis of our theorem we infer that

) yn)f | of—=2E=\|on} @)

2
/
A

-2
L‘l

- ’ 2 @ Y
= \l1- J.E_Q_hl.(ﬁ.l_z E £7° (p,h(t),1)
¢’ i=1

’

and from (13) we conclude immediately that Axiom A7 holds for [ .,'l*/

Remark 1. All the transformations mentioned in Definition 1 and Theorem 1
have a clear intuitive interpretation if we consider <P, ﬂ-,m,s,f,c> as a physical
system whose mechanical properties are observed and measured with respect tc
some (inertial) frame of reference and some set of units of measurement, and
<P,I’,m’,s’,f’,c’> as the same physical system observed and measured with
respect to some other (inertial) frame of reference and some other set of units
of measurement. Thus, ¢ is the old and ¢’/ the new velocity of light. The

introduction of the number ¥ amounts to changing the unit of mass by an amount
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1/6 , and the vector B corresponds to shifting the origin of the spatial frame

of reference by -[B] , and the origin of time by an amount -[B1n+1u
y

lycco4D
The number A represents a uriform stretch of space and time. When & =-1, we
have a reversal of the direction of time. The matrix § represents (for n< 3)

& rotation of the spatial coordinates -- or a rotation followed by a reflection

The wector U represents the relative velscity of the two inertial frames of

eference, and the number ﬁ3, which is determined by U and ¢/, is the well-
kmown Lorentz contraction factor. Finally, it is easy to check that the last
matrix in the factorization of the matrix CL yields the ordinary Lorent:

transformations. We note that the rather complicated transformation of the

forces 1s the velocity-dependent transformation to be expected in relativistic
mehanics.

Remark 2. Theorem 2, our main theorem, is a sort of converse of Theorem 1:
roughly speaking, we show that the transformations described in Theorem 1 are
vhe only transformations which always take systems of relativistic particle
mechanics into systems of relativistic particle mechanics. To facilitate the
formulation and proof of Theorem 2, an additional lemma and some definitions
wili be useful.

Lemmg 3. Le% X._,A= <Zl’xl> s Xz-—' <Z2,x2>gn§_ X3= <23,x9 be any three
points in E . such that (1) x,< x,<x,, (i1) ZLhere is s c-inertial paih
through X, gnd X, and (i11) there is a c-inertial path through X, and X,
Then there is g c-particle path through X, X,, and XB'

Proof. In view of the remark near the end of Section 3, it will suffice
to construct a function g which: (a) is defined on the closed interval
[xl,ley (b) takes vectors in E_ as values; (c) is twice differentiabls;
(4) 1s such that for every t in [x;,x;1, |(Dg)(t)l <c; and (e) 1is suck

that
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glx,) = 2,
glx,) =2,
and
g(xB) - 23
Let,
a= xz-xl
b = x3-rx2
YA
V = 2 1
a
2_-7
W22

b
¥ - e e
c- max(|VI,|W1))min(a,b)

A = 8V log cosh ¥ b+bW log cosh ¥ a
a log cosh ¥b+Db log cosh Ya

B = ab 3 (W-V)
a log cosh Pb+b log cosh xra

The reader may verify that the function g defined by the following equation
(for t 1in [xl,x3]) has properties (a)-(e):

g(t) = Z,+ (t-xz)A+—§- {log cosh ¥ (t- xz)]

Definition 2. Let ¢, be a function mapping R  into R'; let ¢, be &
function which is a 1-1 mapping of E ., into itself; and let @3 be a funchion
napping B, inte E . Then we call the ordered trirle (9, P, Py an
ELIGIBLE TRANSFORMATION.

Definition 3. Let &= (P, P, P, be an elieible transformation,
set M= (P, Tumys,2,c> be a S-R-P.M., and for each p in P let the function
be defined as follows (for every t in A(p))

Hp(t) = [Q,e(p,t) 807 _
Then by the @ -~TRANSFORM of [ (which we also write: (7)), we mean the
ordered quintuple <P, 'I’,m’,S’,f’>, where for p in P:
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n’(p) = q)l(m(p)) ;
A “(p) is the range of the function H s and o’ end £ are defined by the
following equations for t’ in A7(p), if the pre-image H;l(w of ¢’ under
Hp ds unique, and otherwise they are undefined:

3/(p,t") = LQ(s(p, (8 MY

f/(Pﬁt/ 7i) = CPB(f(p,H;l(t,),i),v(p,H;l(t’))) ’

for i 21.

We are now in a position to state and prove the main theorem of this paper.

Theoren 2.7/ Lot & = (P, P,,P,> be an eligible transfornstion, and
let ¢ and ¢/ be positive real numbers such that (i) for every n-dimensional
svaten of relativistic particle mechantes 'y, (B(T,),e"> is a systen of
relativistic particle mechanics, and (ii) ¢, carries no c-line into a.
o’-particle path. Then there exist positive real numbers x and A, an
(n*1)-dimensional vector B, and a generalized Lorentz matrix (L with respect
10 (e,c%, Ny such that for any vectors 2, and Z, in B with |2,|<c, every

xinRand y in R,
) =gy

P, (2, ,x) = <Zl,x> O+ B S

12 Z 'Z
B¢ 1.2
P5(2y,2,) = )\gcz [<""1’ 2 >a]1,,..,n :

Proof. We first want to show that if Z is any vector in En such that
l Z| < c, then
ch(o,z) =0 .
Setting P= {1} , (1) = (~o, ®), m(1)=1, and for t in (1)
s(1,t) = 2t R
£(1,t,1) = 0 for 121 ,
we see that <P, ﬂ',m,s,f,c> is a S.R.P.M. Since for every t in A(1),

Z=v(1,t), we conclude from the hypothesis of our theorem, Definition 2, and




=

- 19 -

Axiom A6 that the series i
CPB(O’Z) + CPa(O’Z) *aas f

is absolutely convergent. Hence,

(1) cf’3(o,z) -0

For every segment ,3 of a c~inertial path there exists a one-particle v

S.R.P.M. <{1},5Cm,s,f,c> such that for every t in A(1)
f(p,t,1) =0 for i1l ,

ey . -

and for every vector X in En"l’ X is in 4& if and only if there is a t in A (1)

such that
X <s(l,t),t>

Hence, it follows immediately from (1) and the hypothesis of our theorem that
(2) q)z carries segments of c-inertial paths into segments of ¢’-inertial
paths.
Let [ = <P, Aymys,£,c) be any S.R.P.M. with constant c. By hypothesis
<§( r'c),c is a S.R.P.M. For any p in P, if t, end t, are in A(p) and

t,#t,, then
@, (s(p,ty) 1) # Polalp,ty) ;)
since q>2 is 1-1. Suppose now that
(P, (s(p,ty),%. ) 0y = [Polalp,ty) 800 ] 0y -
Then we must have
[?2(5(p’t1)’tl)]l,...,n FUPlalpyt)stn)ly o
but then <§( r'c),c'>is not a S.R.P.M., for p is required to be in two places
at the same time, which violates Axiom A3. We thus conclude:

(3) @, 1s 1-1 in the last coordinate along the space-time path of any
particle of a S.R.P.M. Pc’ and thus the pre-image under (., of any
point t/ in L“(p) 1s unique.

Furthermore, since by hypothesis CPZ takes the interval A(p) into an

interval ﬁ(p), we have:
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(4) CP2 is continuous in the last coordinate along the space-time path l |
of any particle of a S.R.P.M,

From (4) and the fact that any two points <Z,x> and <Z,;> lie on a

t-inertial path, we obtain:

(5) For any point é,x> and every € >0, there exists a 5> 0 such
that for any point <Z,y> if |x-yl< &, then |x’-y’|< €, where
x/ = [CP2(Z,x) ]n+1 and y’ = [CPZ(Z,y) ]n+1

We next show that

(1) P, is continuous.

Let <Zl,x]> be any point of E P and let € be any positive number. Let
*
€ AR Usmg (5), let & be a positive number such that if \xl vl 8"
then \x -y’l< e , Where x = [CPZ(Zl,x )] 47 and y’ = [CP2(Z1,y)]n+1, and
let & = gﬁz . We shall show that if<22,x2> is any point of En+1 such that
(6) ,<Zl,xl>—<22,x2>| <38 ’

then ,?2(Zl,x1)- ?2(22’x2)1<€' . Suppose for definiteness that

(7) X2 x,
We may choose x and x, so that
|2,-2, ] |2,-2.]|
: 2 1 2 1
R R R S el
and |
Z," | 2,-2
(9) x1+l <x3<x1+——-ac—-l— + 8
From (7), (8), and (9), we obtain
| 2,-2, ]
(10) |x-x, l<|x-x|+2—-—1-+25 ;

and from (6) and (10) we then infer that
) (e+2)8 _ o
(11) |x3 xol < 5 S
Since from (7), (8), and (9) we have

(12) x,< X, €% < x4 ,
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we obtain from (11)
*
‘XB-xl\< S
*
\ X1 |< 13 ‘
Consequently, by (5)
|x§-x{‘+lx]'_-xc’) ‘< 2€" ,
and thus by the triangle inequality
(13) |x5x )| < 2",
where

x°' - [CPZ(Zl’xo)]n*l ’

/
SL AT
From the second part of (8) it follows that there is a c-inertial path through
<Zl,xo> and <Zz,x2>; and from (7) and the first part of (9) it follows that
there is a c~inertial path through<22,x2> and<Zl,x3>. We thus conclude
from Lemma 3 that there exists a c-particle path through <Zl,xo>, (Zz,x2>

and <Zl,x3>. As before, for abbreviation, we set
/ =
X = (@20 ey
/
2y = [Qy(2yoxp)Yy s

27, = [Q,(2),x, )1 for 1=0,1,3.

l’iit,n
Since CP2 is 1-1 and continuous in the last coordinate along any c-particle
path, it is monotone in the last coordinate along any c-particle path, and

we thus have: either

’ ’ ' d
X, <% <X ’

’ / 4 .
x°<x2<x3 H
(14) or .,
::3<xl<xo ,
7/ ’ ’
13<x2<x° .
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Also, since segments of c-inertial paths are carried by CPZ into segments of

¢’ -inertial paths, we have:

(15) [z11 2\_lz11 27,4+ ‘213 2]<c |x- 3| ¢ |x3-x2| ,

and
(16) |2,,- 2| < | 22| + 2025
We obtain from (14), (15), and (16):
(17) 2]z
Dall oot
<2e|x; x’ | :
Thus from (13) and (17) we conclude that
|27,-2] |< 207 €™
11 2 ’
and from (13) and (14) that
/7 / *
| x| <2€”
%
and since € -5'(-1%;;—) , we infer that

| P, (2,5 - P,(2,x))| < €
which establishes (I).

We next establish:

l<c’|x -x/ ‘| + ¢’ \x -X

5|

n 2\<c’[\x3-x1\ Ix ;\+|x3’- él*‘\xé—xél]

s

(1I1) @, carries parallel segments of c-inertial paths into parallel

segments of ¢ -inertial paths.

e

It is clearly sufficient to show that carries parallel c-inertial paths
2

into parallel segments of c’-inertial paths. Let ?1 and 72 be two parallel

c-inertial paths, and let VIB be a c-inertial path which intersects r)l and 72

in the points Al

exists). (See Figure 1.) As previously, we use a prime to designate the

and A, respectively (obviously such a c-inertial path t’? 3

image under CP2 of a point, line, etc. We may construct a fourth c-inertial

path which intersects 73 betwesn Al and A2

points distinct from A, and A,. Consequently, we infer from (2) that the

and which intersects 71 and 72 at
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segments ?£ and 7; lie in the same plane in the image space of CPZO (See

Figure 2.) Suppose now that qa'and 7£ are not parallel. We extend (if |
necessary) q; and Y}é to their point of intersection, say, J’. We next
select B’ on ?1 between J’ and Ai (we use "between" in such a way that B’
must be distinct from J/ and Ai); similarly, we select D’ on V?E between J’
and Aé, We now consider the pre-images, B and D, of B/ and D’. Since @,
:s 1~1 and continuous, it is clear that B and D must be on the same side of
QB’ i.e., the segment BD does not intersect 73. Let E be a point on 73
batween Al and Az. Then, since Y?B is a c-inertial path, one of the

and [Al]n+1-[E]

numbers [A2]n+1-(E] is positive, and the other is

n+l n+l

negative. Since le and ?2 are parallel, [B]n+1~[A]n+l and [D'Inﬂ-[Az]n+1

have the same sign. We then construct a line through D’ parallel to 73 or
c

through B’ parallel to 1),, according to whether [A2]n+1‘[E]n*1 or

[Aljn+lw(E]n+1

(see Figure 1) that [AZJn+1-[E]n+l agrees in sign and that this sign is positive.

agrees in sign with [B] _.-[A7 .. Suppose, for definitensess,
n+l n+l

Let F/ be the point of intersection of 7; with the line through B’ parallel

’

1 and Aé, and thus F is between Al

to 7£° By construction F’ is between A

and Azp

We then have:

HERNN: S NN = [ 3 R Ve A

1,...,0 ~21,...,n

gk, ]

< c([D],-[8,7 1)+ c(lay] o ~TF] ..

Hence, the line through D and F is a c-inertial path. This line intersects
V?1 at a point, say, G, and, furthermore, by construction DFG is a segment of
a c-inertial path, and hence the image D'F'G’ is a segment of a =’ -inertial

path. But D’F/ is parallel to q;, and the image of G does not lie on the




~a

Fimure

Figure 2
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extension of D'F’, which is a contradiction. Thus 71 and 7 , are perallel, and
the proof of (II) is complete.

We next show that

(111) ‘fz carries the midpoint of any finite segment oX of a c-inertial

path into the midpoint of A’ .

We consider a fixed plane containing o and a line parallel to the t-axis
(the (8+1)®% coordinate axis). In this plane we construct, with X as a
diagonlJ., a parallelogram whose sides and other diagonal are segments of
c-inertial paths. Let the speed of the c-inertial path containing o{ be k.
It is clear that through any point of our fixed plane there are exactly two
lines with speed L , for every positive number 4. Obviously, we may construct
A parallelogram P with X as one diagonal, with the other diagonal a segment
of a c-inertial path with speed %(Bkﬂ:), and with one side a segment of a
c-inertial path with speed %(Hc). The other side of the parallelogram (P
is then a segment of a c-inertial path with speed %(5k+c). We conclude
grom (II) that @ 1s carried by CPZ into a parallelogram P’, and the diagonals
of P are carried into the diagonals of P /. Hence the midpoint of X is
carried into the midpoint of X’ and (III) is established.

We next show that

(1v) @, carries arbitrary lines into lines.
Let X be an arbitrary line in En a and let @1,9 and (Zz,x2> be any two
points on c{. We now construct an "inertial" parallelogram through these
two points. For definiteness, we assume:

k) .

+
. _z] za
o) 2 ’

and we choose x, and 33 80 that:

We set
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2.-2,)
. < |22

x. -

2 2¢ ’
\2.-2,|
x3>'x1 * 2¢ ’

Kzpx > CGoxdl = <2, -G >l K
‘<Zl,xl> - <Z°,xo>\ = \<Zo,x3) - <Zz,x2>l

Let (see Figure 3)
A= <Z1,x1>

B = <Zz,x2>

¢ - <Z°,x°>

D = <zo,x3)

B

=
[ ]
+~|’1

o
Le)

[op]

[ ]
.
+ Dl+ N
ok

|

Figure 3

+ N

o
Q

2

Since the sides of the parallelogram ACBD are by construction segments of
c-inertial paths, we conclude from (II) that AC’B’D” is a parallelogram,
where A” = (PZ(A), etc., and that the sides of A“C’B'D’ are segments of
¢’/-inertial paths. Moreover, it is clear that by construction CED, FEG and
HEK are segments of c-inertial paths, and consequently C’E’'D’, F'E‘G’, and
H"E’K’ are segments of c¢’-inertial paths. Hence by (III), F7, G’, K", and

K’ are the midpoints of the respective sides of A’C’B’D’., Thus, E/ , the point
of intersection of the segments F/G’ and H'K’/, is the point of intersection of
the diagonals of A’C’B'D’. Consequently, E/ is the midpoint of the s~gment
A‘B’/, Since midpoints of finite segments are carried into midpoints of

finite segments and since Qz is continuous, the proof of (IV) 1s complete.

A Bt
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From (IV) and the fact that CP2 is 1-1 and continuous, we immediately
infer that CP2 is a projective transformation, and since it takes no finite
point into a point at infinity, we conclude that

(18) @2 is a non-singular affine transformation, that is, for every

point <Z,x> in En+1

(19) P (z,x) = <z,x)-0sB

where Q is a non-singular matrix of order n+l and B is an (n*l)-dimensional

vector.
NO' let *
S E
(20) Q.- ;i and B=CB,bD>
g

where O is a matrix of order n, Bl’ E and F are n-dimensional vectors,

and b and g are real numbers, Then
%
(21) P, (2,x) = L2O+xF+B 2 +gx+b ) .
Let X be a c-line such that for any two distinet points <z1,xl> and (Zz,x2>

of K

2.~-2

12 _ 5

™%
Obviously, |Wl=c. ©Of is carried by CPZ into a line ‘. We want to show
that & 1is carried into a c’/-line. From (21) it follows that the slope W~

of &’ is given by
(22) ' o LR

WE**’g
By the hypothesis of our theorem
(23) LM

Consider now a sequence of c-inertial lines 0(1,0(2,...,, whose slopes

'1"2’ .++ 8re such that

1im W, =W .
iom ’

i

e REAE o
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From (21) and the hypothesis of our theorem we have

n +
[wi ] = .-1!;—1: <ec’ |
"iE +g
Hence, if WE +g# 0, then
+
(24) || =B |14n 'i‘?,F <c¢’ .
WE +g i->wo 'iE +g
Suppose now that WE +g=0, Then
¥*
o v OO
and therefo‘:c}é
lim (n1¢9+r) =0 .
i-»m
Hence,
WO+ 0
but then

<mid>Qe0
which is impossile, since 0 is non-singular. Thus we have
(25% |W" =c’
For subsequent use we observe that for any S.R.P.M., (P, g,m,s,f,c >
and any p in P and t in ’r(p)
(26) v(p,t)E +g # 0
For v(p,t) #0, the argument is the same as above; in case v(p,t)=0 for some
t, on the supposition that v(p,t)3*+g- 0, we must have g= 0 and F~0, which
again contradicts the non-singularity of (l
From (22) and (25) we get
e

(WE +g) )
and hence ,

(27) WO O - *E EW" + MO F - /%) + [FIR- /%% = 0

Since (27) holds for an arbitrary c-line, we may replace W by -W, and thus
conclude that

B I S T SO P
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NOF - c?E'g) =0

and therefore, since the direction of W is arbitrary,

*
(28) @F* - o'°E g .
In view of the fact that (26) holds for v(p,t)=0, we have
géo

and we may then obtain from (28)

*
(29) i -

'2 )
c 8
Using (20) and (29) we obtain
*
FF
|0t = g9~ EE)
e’"g

-and since a is non-singular, we have

(30) ‘Flz- c’2g2 ¥ 0 ;

' é‘nd from (27), (28), and (30) it follows that
i

Bﬁ*- c’2E*E ¥ 0 .
Thus, from (27),. we have

. 422 12
WOO" - o e - (@B g2
c

Using again the fact that the directior of W is arbitrary, we infer that

22 g2
B@*_c,zE*E_s.i.g_:zJILJ - wd

(31)
2.2 2 ¢
where p-u'—-ile . From (28) and (31) we obtain
c

OO* s OF -

(32) o(~-Q ° '2> a* - ° che

0 -e (BF"-o'%8"g)"  FF-or%

v,& 0 (& 0
o - t.\cz ¥ 0 -c? .
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We next want to show that |4 is positive. Let <Zl,x1> and <Zz,x2> be

two points in En+l such that
!El:le' <c ,
%7 x,
and let
V= <Z19x1> - <Z29x2> )
and
-V / - Va

From (32) we obtain
J o C& 0
V& Q™ - uv v
0 _c/2> M 0 _2)
0 -0'2

M= $ 0\ .
\r( ;) v

0 ¢

Hence,

By the hypothesis on V,

g o)\ .
v v<o ,
2
0 -«¢

and from the fact that c-inertial paths are carried into c¢/-inertial paths,

0
v/ (Q ,2>(v')*< o .
0 «¢

Thus, M 1s positive since it is the ratio of two negative numbers. We set

(33) A=A

We then conclude from (32), (33), Definition 1, and Lemma 2 that

we have

(34) Q,is a generalized Lorentz matrix with respect to <c,c’ , A > .

We now turn to the function CPB which transforms the forces. In deducing
the form of CPB it will be convenient to make use of the functions T, q and
£7°1 defined in Section 3 (in the course of the present proof we obtain their
transformation properties). It is also useful to introduce the function H
defined by the following equation for every p in P and t in L(p),
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H(p,8) = [Qys(p,t), )Ty

We thus have that for t’/ the element in ./‘[/(p) corresponding to t in Qr(p)
H (t) = ¢/
p
We obtain from (21)
¥*
(35) D(Hp) (¢) = vp(t)E +g
For any S.R.P.M. ["= <P, Km,s,,f,c) the following equation is a direct

consequence of Axiom 7 and the appropriate definitions (for any p in P and

t in L(p))

2
d
(36) m(p) —2p (t) = i frel(p,t,i) ;
d'tg i=1
and also, under the hypothesis of our theorem,
dqu Q0 1’
2 3% . o |
(3 P alp) o (H_(4)) iZ: Y (pE (0,0
@ g/ d%q
We now obtain the relationship between ——% (H (t)) and ——g (t).
at'~ P at
Using (35), we obtain p p
a(¢’/ oH.) D(T/ ©H )
(38) -—ff;L(t) - <——5‘3-c;-n-) ()
_ [(DC;)(HD(t)][(DHn)(t)]
(Dcpﬁti
|v/(H (t))lzl
*
ql,__.R_%_.— (v_(t)E +g)
c
‘ )
4 v_(£))] 2
1- 2
e
It is easy to show that 'S
(t) +F
(39)  v/(H (1)) = B ,
PP vp(t)E +g

and hence, using (39) and squaring (38), we get
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. ’ 2 2 * 2 2
(T oH) 2 | o (v (L)E +g)°- (v (t)O+F)
w) | w]| -1 Tp” 8 :p
Cp ¢/ " eR- \vp(t)'

Using (27) to give us the expansion of the right member of (40) and then
using (32) to simplify the result, we obtain

g 2 - y2 * 22
(1) er(fcp”*n) (t)] -12_ {-vp(t))\ &(vp(t))‘ + A\ ]

"% o2 JENNYRTE

2 .
2 .
-2 A ;
c
and hence,

(42) D(TLoH ) (¢) = =555 DT )(+)

where §°=1. We have from (21) and Definition 3
/ = +
| qp(Hp(t)) qp(t)a B .
and thus
(43) [D(q;oap)(t)j-- (qu)(t)a

D(qtoH ) (Dq”) (H (£)) (DHp) (%) |
{D tf’oHP ](t) ) ﬁgé)(gp(t)) DHp 2
Dag
- D‘C; (Hp(t)) )
it is easily shown that .

D(g]’; oH )
qu-,« D[D(tjo Hp }

Since

(44) —2 (4 (t)) = (t)
at/c P D(T oH )
P P P
From (42), (43), and (44) we infer that
(Dg O
p | ~——P———.
(45) d—zqf?-u)) o 0% (+)
H(t)) = t
4 ag? P Sed (pe )
P e P
’ dzq Q
,,-9-——2 5 —2-2 (t)
¢ at_ -
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Now let X and Y be any two vectors in E, with X#0 and | ¥[<c. Then

we get:
P-{1%

m(l) =1
7 - (1__)(x .(l_Y)l -~

ﬁu)-(-&ﬁi Ay

anf for all t in M(1),

Sl(t) = 1:Y+;2L t2z ,
£(1,8,1) = —F— + vl<t)(z.vl;t))2
IV] (t)] 2 [v. (+)]
1l- c2 c|1- —--l———c2

£(1,t,1) =0 for 1i>1
It 1is easy to verify that PXY- <P,ﬂ-,m,s,f,c> is a S.R.P.M., and consequently,
so is <§( r’n),c’> . Thus there is a positive number ) such that

P,m1) = &
We note next that at t=0:

51(0) = 0

(Ds,)(0) = ¥

(0%s,)(0) =2
and
£(1,0,1) = X .

We thus have from (37) for t=0

2,
d7q
¥ | 3 @) = Py :
1
and thus from (45)
,2
X,Y) = $6— (o)(l ;
CPB( 02 /\2 d'C'z

n,n
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and hence from (36)

2
(46) P,(x,1) = ﬁz—‘ixg &, -’-‘;}>(X :
1

9“,.,!1

In view of (1), (46) also holds for X=0.
Now let x be any positive real number. Then we sets

3 -4,...,D
P= {13
m(l) = x
A1) = (~e,e) ,

for t in (1)
s,(t) =5 4°8

£(1,4,1) = —X-8 xv, (£) (89, (t))

2 ! 232
1. Lzléf_).!_ 2 (Lw v, (ZN )
[¢]

c

£(1,t,1) =0 for 1i>1 .
We easily verify that r’x- <P, ﬂjm,s,f,c) is a S.R.P.M. such that for all
t in A(1), i frel(l,t,i)/o. Furthermore, we infer from (36), (37), and
(45) that roxi- .e];rery t in L(1)

~ el’ CPl(x) /2 > 1
(47) Z £°% (1,8, (¢),1) = < Zr"’ (1,t,000
1=1 1 X AN .

and hence from (46)

(48) P,(x) = yx .

Our theporem now follows from (19), (33), (34), (46), and (48).

Remark 3. We want to emphasize the physically reasonable nature of the
hypothesis of the theorem just proved. We have assumed that systems of
relativistic mechanics are carried by our transformaetions into systems of
relativistic mechanics and that light lines are not carried into particle

paths. No assumptions concerning the continuity of either Cpl, P, or CP3




have teen made. Our assumption that CPZ is 1~1 may be justified physically
by the argument that any two space-time ppsitions of a particle distinct with
respect to one observer must be distinct with respect to every observer.

The standard presentations of the special theory of relativity vary a
good deal in their "derivations" of the Lorentz transformations. Almost
" without exception, however, the assumptions underlying these derivations
are not clearly and completely stated. For the physicist who wants to begin
with a set of axioms for relativistic particle mechanics with respect to a fixed
coordinate system, our Theorem 2 provides a rigorous approach to the derivation
of the Lorentz transformations. The transformations we obtain in Theorem 2
are, of course, more general than the Lorentz transformations, but it is
obvious how the hypothesis of Theorem 2 may be strengthened so as to obtain
just the ordinary Lorentz transformations.

Theorem 2 is also pertinent to discussions of the relativity .of size,
(see, for example, Hoffman [4]), since the determination of CPl, @, and CP3
tells us exactly how the system of units of measurement may be changed in
passing from one inertial frame of reference to another.

It is interesting to note that the set of transformations admissible
(i.e., satisfying the hypothesis of Theorem 2) in relativistic particle
mechanics differs sharply from the set of those admissible (see the hypothesis
of Theorem 3 of McKinsey-Suppes [8]) in classical particle mechanics: in the
latter case, but not in the former, admissible transformations can change the
unit of distance differently along different coordinates (with correspondingly
different changes in the unit of force). Thus, although ciassical mechanics
can in a certain sense be regarded as a limiting case of relativistic mechanics,
the set of transformations admissible in classical mechanics is in no sense a

1imit of the set of transformations admissible in relativistic mechanics.
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5. Algebraic Structure of the Set of Admissible Transformations.
Let § be an elibible transformation which satisfies the hypothesis of

Theorem 2 with respect to the positive real numbers c and ¢/. We then call
the ordered triple <@ sC ,c’> an gdmissible triple; and, corresponding to the
informal usage at the end of the previous section, we call an eligible
transformation an admissible iransformation if it is the first element of some
admissible triple. Since the set of admissible transformations is not a group
under the obvious operation of composition, it is natural to ask what 1is its
algebraic structure. We shall show that the structure of the set of admissibl_e
triples is that of a Brandt groupoid (formally defined below)e Roughly

speaking, the main difference between Brandt groupoids and groups is that a

Brandt groupoid is not assumed to be closed under the binary operation
sorresponding to the group operation. Consequently, a Brandt groupoid may
contain many identity elements, that is, many elements e such that

X¥%e=X=e#X whenever x, x#6, and e¥x are in the groupoid. If there is

an @ in the groupoid such that for all x in the groupoid ej¢x=x= e¥x, then

the groupoid is also a group. For this reason, we introduced the notion of !
an admissible triple: the admissible transformation which carries every
S.R.P.M. into itself is an identity element whose composition with every
admissible transformation is defined; consequently, the set of admissible
transformations is neither a group nor a Brandt groupoid.

The notion of a Brandt groupoid was first defined in Brandt [1); we use
the formal definition given in Jénsson-Tarski [5]. '
Definition 4. An algebraic system = <G,*,J,-1> (where » is an
operation on g subset of UxU o U, J is & subset of U and ™ is an operation
on U 0 U) 13 galled a BRANDT GROUPOID if and only Af the following conditions

are ggtisfieds

i
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(1) For x,7,2 in G, if x#y€G and y*z€G, then (x#y)%z€G and
(x%y)kz=xx(y¥z).
(11) Por x,y,z in G, if x%y €G and x¥y=x%z, then y=z.
Q@  (ii1) PFor x,y,2 in G, if xkz€G and x%z=y%z, then x=y.
(1v) x%x=x for every x in J.

(v) xY¥xeJ and x#x € for every x in G.

(vi) For x,z in J, there exists a y in G such that x»}y €G and y*z€G.

Rather than deal directly with admissible triples, it is somewhat simpler
to use the following representation. From Theorem 2 we conclude that to each

admissible triple there corresponds a unique ordered sextuple <&,B, N ’ A se,¢” >,

- .. ' where B is an (n+1)-dimensional vector, b‘, )\ , ¢, and ¢’ are positive real
numbers, and a is a generalized Lorentz matrix (of order n*l) with respect to
é,c’, )\>. Such an ordered sextuple <0,B,b‘, )\,c,c'> we .shall call a

carrier. From Theorem 1, together with Theorem 2, it then follows that there

is a 1-1 correspondence between the set of carriers and the set of admissible

triples.
We say that the carrier <a',B’, ¥ 'y ,01,62> is left-conformable to
the carrier <0-,B, 6,)\ ,C

=c,. B conformable
3,c1> if and only if ¢y 04 y the conformab
subget t9of KxK we mean the set of ordered pairs of elements of K such that

the first element is left-conformable to the second.
We now define what we call the carrier system.
Definition 5. By THE CARRIER SYSTEM we mean ihe ordered quadruple
K = &, %,3,71>, uhere:
(1) K is the set of all carriers;
(11) #% is the operation on ¥ to K such that if the carrier
Q0 3, ¥’ N 1109, 1s deti-sonfornable to the sarxisr (0B, ¥, N e50
then
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<O,',B’, ?s/ ’ >\, ’01’°2> * <aaBs 89 )\ ’°3594>
= <{0.0./,80/ +B/, ¥y §', A )\’,c3,02> 5
(111) J is the set of carriers of the form<3,0,1,1,c,¢>, where
is the identity matrix of order n+l; and
(1v) ~* is the operation on X to K such that it <0.,B,%, A,c,c?D €K

then

<0~,B, ¥ )\,c,c’>-1 - <O~°1,-BQ-1,1/5 W, 1/A ,¢75¢ >
We have then the following theorem, the proof of which we omit.

Theorem 3. The carrier system is g Brandt groupeid.

We remark first that the operation ¥ of the carrier system corresponds
to the composition of admissible triples, i.e., if @,c,c’) corresponds to
<0.,B,U, A,e,c ’> and <"P,c’,c”> corresponds to @.',B’,U’, Ayl e”),
then <0.0/,BQ +B", ¥ ¥ A >\',c,c"> corresponds to <9,c,c ”> , where
<G,c,c'> is the admissible triple such that for any S.R.P.M. [_’c

<'$”(<¢( r’c),c’>),c”> = <o ["'c),c"> .

1

Similarly, the inverse operation ~ of the carrier system corresponds to the

natural inverse operation on admissible triples: i.e., if <§,c,c’> corres-
ponds to <0~,B,]g, }\,c,c’> and <’I’,c’,c> corresponds to
<O~'1,-BQ-1,1/5 L1/ ,c',c> , then for any S.R.P.M. r\c
{HLB(P e’ Dyed> = Ty

It thus follows as a corollary to Theorem 3 that the set of admissible
triples is a Brandt groupoid under the natural operatlons of composition and
formation of inverses.

It is natural to ask how the hypothesis of Theorem 2 may be strengthened
so that the set of eligible transformations satisfying it form a group. We

state without proof some results concerning this question.
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carries every system of relativistic particle mechanics into a syatem of
relativistic particle mechanics. Then there exist positive real umbers 9,
¥» N, and o, an (n*1)-dinensional vestor B, an orthogonal matrix ¥ of order
n and a matrix O of order n*l such that

§% =1

0- A(J o) (z«? o>

oe/\o 8 ’

and for any vectors Z, and %, i E, any x s Rand y i R,

@) = By

P, (2,,%) = <Z1,x>Q+B ,

ye'n %

Q5 20%p) = =y
The interpretation of %, ¥ A\, B and ¢ 1s the same as that stated in
Remark 1. The number P is the ratio c/c’ of the absolute values of the old
and new velocities of light. The matrix (l is a generalized Lorentz matrix
with U= 0, which intuitively means that the old and new spatial frames of
reference are at rest with respect to each other. The fact that the hypothesis
of Theorem 4 thus excludes the possibility of transforming from one inertial
frame of reference to another moving with respect to it is sufficient reason
to regard this hypothesis as unnecessarily strong from the point of view of
our intended physical interpretation. On the other hand, it is, of course,
clear that the set of transformations satisfiying this hypothesis constitute a

group under the obvious operations.
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FOOTNDTES

l/(page 1) We are grateful to Professor J. C. C. McKinsey for a large number
of helpful suggestions and criticisms. This work was supported in part
by a grant from the Office of Naval Research.

a/(page 6) Paulette Destouches-Février (in (2], pp. 5-6) advocates the use of
a three-valued logic to describe the creation and annihilation of
elementary psrticles. Actually, the situation i3 easily handled by the
simple device of introducing the function I defined on P instead of
a fixed interval T for the whole system. Indeed, to our mind, her drastic
proposal cannot be taken seriously until we know a great deal more
about the mathematics which goes with a multi-valued logic. Even if
such a body of mathematics existed (as it does not -- we do not have
even the general outlines of elementary set theory in three-~valued
logic), it would be reasonable to adopt such a proposal only after
every feasible alternative in standard mathematics had been explored.

3'/(page 8) The intuitive interpretation of En+1 is as the space-time manifold
of special relativity with the (n+1)8% coordinate representing the time
coordinate. Thus, if (Z,x) is a point of En+1’ then under the intended
interpretation, the n-dimensional vector Z gives the spatial coordinates
of the point and x its time coordinate.

L/(page 15) Readers familiar with the standard treatments of relativistic
mechanics will note that (in the interests of rigor and explicitness)
we have replaced "t’" by “hp(t)".

5/(page 18) The statement of Theorem 2 would be made more symmetrical to
Theorem 1 if (P, were replaced by two functions @’ and ®” such that
/ -
and

1"
P(z,x) = [cpz(z,x)]l’m’u
This procedure was followed in McKinsey and Suppes [87 for classical
mechanics, but in relativistic mechanics, it is natural to introduce

the single transformation C?z for the space-time manifold.
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